Turbulent Flame Dynamics of Homogeneous Solid Propellant in a Rocket Motor
نویسندگان
چکیده
A comprehensive numerical analysis has been conducted to study the combustion of a double-base homogeneous propellant in a rocket motor. Emphasis was placed on the motor internal flow development and its influence on propellant combustion. The formulation is based on the Favre-averaged, filtered equations for the conservation laws and takes into account finite-rate chemical kinetics and variable thermophysical properties. Turbulence closure is obtained using the large-eddy-simulation technique. The contribution of large energy-carrying structures to mass, momentum, and energy transfer is computed explicitly, and the effect of small scales of turbulence is modeled. The governing equations and associated boundary conditions are solved using a time-accurate, semi-implicit Runge-Kutta scheme coupled with a fourth-order central difference algorithm for spatial discretization. The motor internal flowfield is basically determined by the balance between the inertia force and the pressure gradient arising from the mass injection at the propellant surface. The temporal evolution of the vorticity field shows a laminar upstream region, a transition zone in the midsection of the chamber, and a fully developed turbulent regime further downstream. The turbulent mixing proceeds at a rate faster than chemical reactions, and the flame stretch is strong enough to regard propellant combustion as a well-stirred reactor. The combustion wave in the laminar region exhibits a two-stage structure consisting of a primary flame, a dark zone, and a secondary luminous flame. The enhanced energy and mass transport in the turbulent region partially merges the primary and secondary flames, thereby raising the temperatures in the dark zone. In the present study, the smoother axial velocity gradient and vertical flow convection prevent turbulence from deeply penetrating into the primary flame zone. The turbulence energy spectra indicate dominant harmonics in a frequency range capable of triggering combustion instabilities.
منابع مشابه
Unsteady Flow Evolution and Combustion Dynamics of Homogeneous Solid Propellant in a Rocket Motor
A time-resolved numerical analysis of combustion dynamics of double-base homogenous solid propellant in a rocket motor is performed by means of a Large-Eddy Simulation (LES) technique. The physiochemical processes occurring in the flame zone and their influence on the unsteady flow evolution in the chamber are investigated in depth. A five-step reduced reaction mechanism is used to obtain the t...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملOne Dimensional Internal Ballistics Simulation of Solid Rocket Motor
An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steg...
متن کاملمروری بر انواع رزین و الیاف تقویتکننده در عایقهای کامپوزیتی سوخت جامد
Thermal insulation materials protects internal surface of the motor casing in contact with the hot produced gases, extreme turbulence flow and high pressure due to combustion propellant. Insulation Materials in the rocket motor covers the inner surface of the motor casing and protect the body against the damage caused by extreme and short-term heat, intense turbulent flow and high pressure. O...
متن کامل